Transform PSCIS Assessment Worksheet Data by Calculating Embedment Score
Source:R/fpr_xfm_paw_score_embed.R
fpr_xfm_paw_score_embed.Rd
This function calculates the embedment score for BC Provincial Stream Crossing Inventory System (PSCIS) data based on conditions involving continuous embedment, pipe diameter, and average depth of embedment.
Usage
fpr_xfm_paw_score_embed(
dat,
col_continuous_embeddedment_yes_no = continuous_embeddedment_yes_no,
col_diameter_or_span_meters = diameter_or_span_meters,
col_average_depth_embededdment_meters = average_depth_embededdment_meters,
col_embed_score = embed_score,
risk_high = 10,
risk_mod = 5,
risk_low = 0
)
Arguments
- dat
[dataframe] A dataframe containing the PSCIS data.
- col_continuous_embeddedment_yes_no
[character] A column name specifying continuous embedment ("Yes" or "No"), as a string or tidy-select syntax. Default is `continuous_embeddedment_yes_no`.
- col_diameter_or_span_meters
[character] A column name specifying the diameter or span, as a string or tidy-select syntax. Default is `diameter_or_span_meters`.
- col_average_depth_embededdment_meters
[character] A column name specifying the average depth of embedment, as a string or tidy-select syntax. Default is `average_depth_embededdment_meters`.
- col_embed_score
[character] A column name for the output embedment score, as a string or tidy-select syntax. Default is `embed_score`.
- risk_high
[numeric] A numeric value representing the risk score for non-continuous embedment. Default is `10`, aligning with the Pisces assessment worksheet.
- risk_mod
[numeric] A numeric value representing the risk score for moderate embedment conditions. Default is `5`, aligning with the Pisces assessment worksheet.
- risk_low
[numeric] A numeric value representing the risk score for low-risk embedment conditions. Default is `0`, aligning with the Pisces assessment worksheet.
Examples
dat <- data.frame(
continuous_embeddedment_yes_no = c("No", "Yes", "Yes"),
diameter_or_span_meters = c(2, NA, 3),
average_depth_embededdment_meters = c(0.4, 0.1, NA)
)
fpr_xfm_paw_score_embed(
dat
)
#> continuous_embeddedment_yes_no diameter_or_span_meters
#> 1 No 2
#> 2 Yes NA
#> 3 Yes 3
#> average_depth_embededdment_meters embed_score
#> 1 0.4 10
#> 2 0.1 0
#> 3 NA 0